Topology of classical molecular optimal control landscapes in phase space
نویسندگان
چکیده
منابع مشابه
Topology of classical molecular optimal control landscapes for multi-target objectives.
This paper considers laser-driven optimal control of an ensemble of non-interacting molecules whose dynamics lie in classical phase space. The molecules evolve independently under control to distinct final states. We consider a control landscape defined in terms of multi-target (MT) molecular states and analyze the landscape as a functional of the control field. The topology of the MT control l...
متن کاملThe Graded Classical Prime Spectrum with the Zariski Topology as a Notherian Topological Space
Let G be a group with identity e. Let R be a G-graded commutative ring and let M be a graded R-module. The graded classical prime spectrum Cl.Specg(M) is defined to be the set of all graded classical prime submodule of M. The Zariski topology on Cl.Specg(M); denoted by ϱg. In this paper we establish necessary and sufficient conditions for Cl.Specg(M) with the Zariski topology to be a Noetherian...
متن کاملComputational complexity of quantum optimal control landscapes
We study the Hamiltonian-independent contribution to the complexity of quantum optimal control problems. The optimization of controls that steer quantum systems to desired objectives can itself be considered a classical dynamical system that executes an analog computation. The systemindependent component of the equations of motion of this dynamical system can be integrated analytically for vari...
متن کاملsynthesis of platinum nanostructures in two phase system
چکیده پلاتین، فلزی نجیب، پایدار و گران قیمت با خاصیت کاتالیزوری زیاد است که کاربرد های صنعتی فراوانی دارد. کمپلکس های پلاتین(ii) به عنوان دارو های ضد سرطان شناخته شدند و در شیمی درمانی بیماران سرطانی کاربرد دارند. خاصیت کاتالیزوری و عملکرد گزینشی پلاتین مستقیماً به اندازه و- شکل ماده ی پلاتینی بستگی دارد. بعضی از نانو ذرات فلزی در سطح مشترک مایع- مایع سنتز شده اند، اما نانو ساختار های پلاتین ب...
Semi-classical Scar functions in phase space
We develop a semi-classical approximation for the scar function in the Weyl-Wigner representation in the neighborhood of a classically unstable periodic orbit of chaotic two dimensional systems. The prediction of hyperbolic fringes, asymptotic to the stable and unstable manifolds, is verified computationally for a (linear) cat map, after the theory is adapted to a discrete phase space appropria...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Chemical Physics
سال: 2013
ISSN: 0021-9606,1089-7690
DOI: 10.1063/1.4797498